Chemistry of Thiocarbonyl Complexes of the Type π -(C₅H₅)Fe(CO)(CS)(L)⁺

L. BUSETTO and A. PALAZZI

Facolta' di Chimica Industriale, University of Bologna, 40136 Bologna, Italy Received February 9, 1976

Cationic thiocarbonyl complexes of the type π -(C₅H₅) $Fe(CO)(CS)(L)^+$ have been prepared from π -(C₅H₅) $Fe(CO)_2(CS)^+$ and various group VA ligands. The loss of CO in the substitution reaction suggests that the strength of the Fe-(CS) bond is greater than that of the Fe-(CO) bond. The ¹³C n.m.r. spectra of these new thiocarbonyl derivatives indicate that the deshielding of the thiocarbonyl resonance increases as the infrared stretching force constant of the CS group decreases; the shielding of the carbonyl resonance of π -(C₅H₅)Fe $(CO)(CS)(P(C_6H_5)_3)^+$ relative to the π - $(C_5H_5)Fe(CO)_2$ $(P(C_6H_5)_3)^+$ is attributed to the increased π -acceptor ability of CS relative to CO. The reactions of π -(C₅H₅) $Fe(CO)(CS)(L)^+$ with various nucleophiles such as NH₂R, CH₃O⁻, N₃⁻, NH₂NH₂ have been studied; in all the cases reported the nucleophilic addition occurs, at the carbon of the thiocarbonyl group, in line with the ¹³C n.m.r. chemical shift of the thiocarbonyl which indicates a large deshielded carbon resonance. The nucleophilic reactions studied can be summarized as follows: reaction with NH_2R with formation of π -(C₅H₅) $Fe(CO)(L)(CNR)^+$; reaction with N_3^- and NH_2NH_2 leading to π -(C₅H₅)Fe(CO)(L)(NCS); reaction with CH_3O^- yielding thiocarbonyl derivatives π -(C_5H_5)Fe $(CO)(L)(C(S)OCH_3).$

Introduction

Several studies have shown that the thiocarbonyl group is one of the best π -bonding ligands. Infrared studies of iron¹, manganese² and rhodium³ thiocarbonyl complexes have supported this idea. Also Mössbauer data for the cationic complexes, π -(C₅H₅)Fe (CO)₂(CS)⁺ and π -(C₅H₅)Fe(CO)₃⁺, indicate that CS is a more effective π -acceptor than CO⁴. Recent kinetic measurements on reactions of the type:

$$\pi - (C_5H_5)Mn(CO)(CS)(C_8H_{14}) + P(C_6H_5)_3 \rightarrow \\ \rightarrow \pi - (C_5H_5)Mn(CO)(CS)(P(C_6H_5)_3) \quad (1)$$

(C_8H_{14} = cis-cyclooctene)

indicate that olefin dissociation occurs more rapidly in π -(C₅H₅)Mn(CO)(CS)(C₈H₁₄) than in π -(C₅H₅)Mn (CO)₂(C₈H₁₄)⁵. This too supports greater π -bonding for the CS ligand as compared to CO.

More recently it has been shown thant under photochemical conditions the substitution reaction of π -(C₅H₅)Mn(CO)₂(CS)⁶ and π -(RC₆H₅)Cr(CO)₂ (CS)⁷ with Group VA donor ligands takes place by replacement of carbon monoxide, indicating that the strength of the M–CS bond is higher than that of the M–CO bond.

Although strong π -bonding from metal to the CS group stabilizes thiocarbonyl complexes, other studies suggest that the carbon atom of the CS ligand is quite susceptible to attack by nucleophiles such as OCH₃⁻ and amines. In the few cases studied, except for Ir(CO)₂ (CS)L₂⁺⁸, the nucleophile attacks the CS ligand in preference to CO ligands in the complexes. Reported reactions of the CS ligand follow:

$$\pi - (C_5H_5)Fe(CO)_2(CS)^+ + OCH_3^- \rightarrow \pi - (C_5H_5)$$

Fe(CO)_2C(S)OR⁹ (2)

$$W(CO)_{5}(CS) + H_{2}NCH_{3} \rightarrow W(CO)_{5}$$
$$(C \equiv N - CH_{3}) + H_{2}S^{10} \quad (3)$$

$$\pi$$
-(C₅H₅)Fe(CO)₂(CS)⁺ + N₃⁻ $\rightarrow \pi$ -(C₅H₅)
Fe(CO)₂NCS + N₂⁹ (4)

$$\pi - (C_5H_5)Fe(CO)_2(CS)^+ + NCS^- \rightarrow \pi - (C_5H_5) Fe(CO)_2CN + CS_2^9$$
(5)

The mechanisms of reactions (3), (4) and (5) are postulated to involve unstable intermediates of the type:

which rearrange to give M--CN or M--CNR derivatives.

We have now examined the reactions of the thiocarbonyl cation π -(C₅H₅)Fe(CO)₂(CS)⁺ with various Group VA ligands (L) to ascertain whether CO or CS was preferentially substituted in order to: (i) have indication of the relative Fe–CO and Fe–CS bond strengths and (ii) if the products were the π -(C₅H₅) Fe(CO)(CS)(L)⁺, to carry out reactions with amines and other nucleophiles such as CH₃O⁻, N₃⁻ and NH₂– NH₂. It was hoped that this study would give us an indication on the factors influencing the reactivity of thiocarbonyl complexes toward nucleophiles.

Experimental

The complex $[\pi-(C_5H_5)Fe(CO)_2(CS)]PF_6$ was prepared by the published procedure¹⁻¹¹. Absolute methanol was dried and purified by distillation after refluxing over Mg(OCH_3)_2. Dichloromethane was dried over molecular sieves. Acetone was distilled after refluxing over KMnO₄ and dried with K₂CO₃. Liquid amines were freshly distilled prior to use; phenyl isonitrile was prepared following the method of Ugi¹²; the phosphines and all other chemicals were used as commercial products without further purification. All reactions were carried out under nitrogen atmosphere.

Infrared spectra were recorded on a Perkin–Elmer model 177 spectrometer; ¹³C n.m.r. spectra were recorded on a Bruker-HX-90 operating in the Fourier transform mode; ¹H n.m.r. spectra were measured on a Jeol T-60 spectrometer; conductivity measurements were carried out with a LKB 5300 B conductivity bridge.

General preparative methods are given below and analytical data for the compounds prepared are in Table I.

 $\begin{bmatrix} \pi - (C_5H_5)Fe(CO)(CS)(L) \end{bmatrix} PF_6 (L = P(C_6H_4F)_3, \\ P(C_6H_{11})_3, P(C_6H_4OCH_3)_3, P(C_6H_5)_3, As (C_6H_5)_3, \\ Sb(C_6H_5)_3 \end{bmatrix}$

 $[\pi$ -(C₅H₅)Fe(CO)₂(CS)]PF₆ (1 mmol) was dissolved ed in dry acetone and treated with an excess (1:4) of the appropriate ligand. The solution was then stirred until no further reaction took place, as evidenced by the disappearance in the ν (CO) region of the i.r. spectrum of the carbonyl stretching absorptions of the starting thiocarbonyl derivative. After evaporation of the solvent under reduced pressure the residue was washed with light petroleum and purified by several crystallizations until no π -C₅H₅Fe(CO)₂L⁺ was present in the final product. The various solvent systems are collected in Table I. All the products were dried *in vacuo* (20–50% yields).

$[\pi - (C_5H_5)Fe(CS)(CNC_6H_5)_2]PF_6$

The complex $[\pi$ -(C₅H₅)Fe(CO)₂(CS)]PF₆ (1 mmol) was dissolved in 30 ml of dry acetone and treated with 2 mmol of phenyl isonitrile; the solution turned red-brown and was stirred for 24 hr. After removal of the solvent under reduced pressure the residue was washed with diethyl ether, dissolved in dichloromethane and filtered; on addition of diethyl ether and cooling at -78° C a yellow crystalline precipitate was obtained (35% yield).

π -(C₅H₅)Fe(CO)(P(C₆H₅)₃)(C(S)OCH₃)

A solution of 0.3 gr (0.5 mmol) of $[\pi$ -(C₅H₅)Fe (CO)(CS)(P(C₆H₅)₃)]PF₆ dissolved in 50 ml of dry methanol was treated, with stirring, with an excess of Na₂CO₃ for 6 hr. During this time the clear solution

became cloudy. The mixture was filtered and the residue washed with 20 ml of dichloromethane. The resulting solution was evaporated to dryness, the solid dissolved with dichloromethane and filtered; on concentrating the solution under reduced pressure a yellow crystalline solid was obtained (34% yield).

π -(C₅H₅)Fe(CNC₆H₅)₂(C(S)OCH₃)

A solution of 0.258 gr (0.5 mmol) of $[\pi$ -(C₅H₅) Fe(CNC₆H₅)₂(CS)]PF₆ dissolved in 50 ml of dry methanol was treated under stirring with an excess of anhydrous Na₂CO₃ for 12 hr. The resulting yellow solution was filtered and evaporated to dryness under reduced pressure. The residue, extracted with dichloromethane (20 ml), was filtered and the solution concentratd to 2 ml. Chromatography of this solution on a alumina column, with CH₂Cl₂ as eluent, gave a yellow band which was collected and evaporated under reduced pressure leaving a yellow oil, which was dried under high vacuum.

$[\pi - (C_5H_5)Fe(CO)(CNCH_3)(P(C_6H_5)_3)]PF_6$

Methylamine was slowly bubbled into a stirred suspension of 0.5 mmol of $[\pi$ -(C₅H₅)Fe(CO)(CS)(P (C₆H₅)₃)]PF₆ in 30 ml of dry diethyl ether saturated with nitrogen. After 15 min the reaction was stopped and the solvent removed with a stream of nitrogen. The residue was dissolved with 20 ml of CH₂Cl₂ and the solution was filtered. The yellow crystalline $[\pi$ -(C₅H₅)Fe(CO)(CNCH₃)(P(C₆H₅)₃)]PF₆ was obtained by addition of diethyl ether (20 ml) and on cooling the solution to -15° C (65% yield).

$[\pi - (C_5H_5)Fe(CO)(CNCH_3)(P(p-FC_6H_4)_3)]PF_6$

The title compound was prepared in $\sim 60\%$ yield by the procedure described above and was crystallized from dichloromethane-hexane.

$[\pi - (C_5H_5)Fe(CO)(CNCH_3)(P(C_6H_{11})_3)]PF_6$

To a suspension of 0.309 gr (0.5 mmol) of $[\pi$ -(C₅H₅) Fe(CO)(CS)(P(C₆H₁₁)₃)]PF₆ in 20 ml of dry diethyl ether were added 30 ml of diethyl ether saturated with methylamine. The solution was stirred for 5 days and the solvent was removed under reduced pressure. The residue was dissolved with 20 ml of CH₂Cl₂ and filtered. Addition of hexane give the light yellow product in ~65% yield.

$[\pi - (C_5H_5)Fe(CO)(CNC_6H_{11})(P(C_6H_5)_3)]PF_6$

To a solution of 0.300 gr (0.5 mmol) of $[\pi$ -(C₅H₅) Fe(CO)(CS)(P(C₆H₅)₃)]PF₆ in 20 ml of CH₂Cl₂ were added 1.0 ml of cyclohexylamine. The reaction mixture was stirred for 4 hr and by addition of hexane a yellow-brown precipitate was obtained which was filtered, dissolved in 10 ml of dichloromethane and crystallized by slow addition of hexane (64% yield).

Compound	Reaction	Crystallized ^b	Colour	Am ^c	Analysis, for	und (calcd.)		
	1 me, hr	IIIOII		ید دm² mol ⁻¹	c	Н	z	s
[\mu-(C_5H_5)Fe(CNC_6H_5)_2(CS)]PF_6	24		Brown	121	46.9	3.0	5.0	7.1
					(46.5)	(2.9)	(5.4)	(6.2)
[π-(C ₅ H ₅)Fe(CO)(CS)(P(C ₆ H ₄ F) ₃)]PF ₆	48	d/e	Pale Yellow	129	46.3	2.6	1	4.4
					(45.9)	(2.6)		(4.9)
[π-(C ₅ H ₅)Fe(CO)(CS)(P(C ₆ H ₁₁) ₃)]PF ₆	2	d/e	Yellow	131	49.2	6.4	Ι	4.1
					(48.5)	(6.1)		(5.2)
[<i>π</i> -(C ₅ H ₅)Fe(CO)(CS)(P(C ₆ H ₄ OCH ₃) ₃)]PF ₆	60	d/e	Yellow	I				
$[\pi-(C_5H_5)Fe(CO)(CS)(P(C_6H_5)_3)]PF_6$	24	a/h	Yellow	127	51.0	3.4	I	4.2
					(50.0)	(3.3)		(2.3)
$[\pi-(C_5H_5)Fe(CO)(CS)(Sb(C_6H_5)_3)]PF_6$	70	a/e	Yellow		44.1	3.2	I	4.9
					(43.4)	(2.9)		(4.6)
$[\pi$ -(C ₅ H ₅)Fe(CO)(CS)(As(C ₆ H ₅) ₃)]PF ₆	70	d/e	Yellow	95				
[<i>n</i> -(C ₅ H ₅)Fe(CO)(CNCH ₃)(P(C ₆ H ₄ F) ₃)]PF ₆	0.5		Yellow		48.2	3.3	2.3	I
					(47.9)	(3.1)	(2.1)	
[π-(C ₅ H ₅)Fe(CO)(CNCH ₃)(P(C ₆ H ₁₁) ₃)]PF ₆	50		Yellow-Brown	117	50.7	6.7	2.4	ł
					(50.7)	(6.7)	(2.3)	
$[\pi-(C_5H_5)Fe(CO)(CNCH_3)(P(C_6H_5)_3)]PF_6$	0.25		Pale Yellow		53.1	4.9	2.5	I
					(52.3)	(3.9)	(2.3)	
$[\pi - (C_5H_5)Fe(CO)(CNC_6H_{11})(P(C_6H_5)_3)]PF_6$	4		Yellow-Brown		56.2	4.8	1.9	I
					(55.9)	(4.7)	(2.1)	
π -(C ₅ H ₅)Fe(CO)(P(C ₆ H ₅) ₃)(C(S)OCH ₃)	9		Yellow	1	65.2	5.0	١	5.9
					(64.2)	(4.7)		(9.9)
π -(C ₅ H ₅)Fe(CNC ₆ H ₅) ₂ (C(S)OCH ₃)	12		Yellow	I	63.5	4.8	6.3	7.6
					(62.7)	(4.5)	(1.0)	(8.0)
π -(C ₅ H ₅)Fe(CO)(P(C ₆ H ₅) ₃)NCS ^d	ł		Red	I	64.2	4.5	3.2	6.7
· · · · · · · · · · · · · · · · · · ·					(64.0)	(4.3)	(3.0)	(6.8)
π -(C ₅ H ₅)Fe(CO)(P(C ₆ H ₁₁) ₃)NCS ^e	1		Red	ł	62.3	7.6	3.2	6.7
					(61.6)	(7.8)	(2.9)	(9.9)
^a Taken at the disapperance of the ν CO absorpt ^b Abbreviations used: d = dichloromethane; e = d	tion of the star liethylether; a =	ting complex. acetone; h =	n-hexane. ^c Acetone NH ₂ -NH ₂ . ^e Using N ₅	solvent. ^d Data ³ .	t obtained for	the comple	k prepared u	Ising

Thiocarbonyl Complexes

TABLE I. Analytical Data.

$[\pi - (C_5H_5)Fe(CO)(CNC_6H_5)(P(C_6H_5)_3)]PF_6$

The complex was prepared by the same procedure described above by reacting $[\pi$ -(C₅H₅)Fe(CO)(CS) (P(C₆H₅)₃)]PF₆ with excess of aniline (1:5) in dichloromethane solution. The reaction is very slow and after 20 days an i.r. spectrum of the reaction mixture shows together with the ν (CO) of the starting complex an additional band at 1998 cm⁻¹ attributable to the terminal CO stretching frequency of the title compound, which can be isolated by chromatography of the CH₂Cl₂ solution on Al₂O₃ followed by crystallization from CH₂Cl₂/diethyl ether.

$\pi - (C_5H_5)Fe(CO)(L)(NCS) \ (L = P(C_6H_5)_3, \ P(C_6H_{11})_3)$ From NaN₃

To a solution of 0.5 mmol of $[\pi-(C_5H_5)Fe(CO)]$ (CS)(L)]PF₆ in 30 ml of dry acetone was added 0.5 mmol of NaN₃ dissolved in 1 ml of water. Nitrogen was rapidly evolved, and the solution turned from yellow to red. After stirring for 20 min at room temperature, the acetone was removed in a rotatory evaporator and 15 ml of water were added to the residue. The resulting mixture was shaken with 20 ml of CHCl₃ and the organic layer dried over CaCl₂. The resulting solution was chromatographed in a alumina column using CH₂Cl₂ as eluent and the red band which contained the thiocyanate complex was collected; after evaporation of the solvent to 5 ml followed by addition of 50 ml of hexane the red π -(C₅H₅)Fe(CO)(L)(NCS) was collected in a 50% yield; m.p.: $L = P(C_6H_5)_3$, 164°C; $L = P(C_6H_{11})_3$, 120°C.

From NH₂-NH₂

A mixture of 0.5 mmol of $[\pi$ -(C₅H₅)Fe(CO)(CS) (L)]PF₆ and 0.05 ml (1 mmol) of NH₂–NH₂ in CH₂Cl₂ was allowed to react at room temperature under nitrogen with stirring. The reaction mixture turned red immediately. After 30 min the solvent was evaporated off under vacuum and the residue treated with 15 ml of water and 20 ml of CHCl₃. The organic layer was dried over CaCl₂ and evaporated to dryness; the residue was dissolved in 2 ml of CH₂Cl₂ and chromatographed on alumina collecting the red band from which the red π -(C₅H₅)Fe(CO)(L)(NCS) derivative was purified as described above (35% yield).

Results and Discussion

Substitution Reactions

The π -(C₅H₅)Fe(CO)₂(CS)⁺ complex reacts with Group VA donor ligands to give substitution products of the CO group according to the equation:

$$\begin{aligned} & [\pi - (C_5H_5)Fe(CO)_2(CS)]PF_6 + L \rightarrow [\pi - (C_5H_5) \\ & Fe(CO)(CS)(L)]PF_6 + CO \quad (6) \\ & \text{where } L = P(C_6H_{11})_3, P(C_6H_5)_3, P(C_6H_4F)_3, \\ P(C_6H_4OCH_3)_3, As(C_6H_5)_3, Sb(C_6H_5)_3 \end{aligned}$$

All these reactions were carried out in dry acetone with an excess of the appropriate ligand. The reaction time is very markedly dependent on the nature of the ligand L; with $L = P(C_6H_{11})_3$ the reaction takes about 2 hr to go to completion while with $L = P(C_6H_5)_3$ it takes about 24 hr. The i.r. spectra of the crude products of the reaction (6) show, together with the terminal CO stretching frequency of the π -(C₅H₅)Fe(CO)(CS)(L)⁺ complex, two additional side bands due to thiocarbonyl substituted products, π -(C₅H₅)Fe(CO)₂(L)⁺. When $L = P(C_6H_5)_3$, these bands fall at 2070 and 2017 cm⁻¹ in agreement with that reported in literature for the π -(C₅H₅)Fe(CO)₂(P(C₆H₅)₃)⁺ complex^{13, 14}. The small amounts (<5%) of the observed π -(C₅H₅)Fe(CO)₂ $(L)^+$ complex could be well interpreted as due to a CO substitution from the π -(C₅H₅)Fe(CO)₃⁺, not present in the starting thiocarbonyl complex, but formed in the reaction mixture. Another possible explanation for the formation of the π -(C₅H₅)Fe(CO)₂(L)⁺ complex is that the CS group must be substituted in the reactions with the L ligands. In any event, it should be emphasized that the main products of the reaction (6) are the thiocarbonyl complexes π -(C₅H₅)Fe(CO)(CS)(L)⁺ which can be purified by several crystallizations from dichloromethane-ether.

The i.r. and n.m.r. spectra of the new derivatives are presented in Table II. As expected, one ν (CO) absorption (2037–2020 cm⁻¹) and one ν (CS) absorption (1325–1315 cm⁻¹) are observed for the π -(C₅H₅)Fe (CO)(CS)(L)⁺ complexes. The ν (CS) stretching modes decrease as the basicity of the ligand L increases indicating that the ν (CS) follows the same trend with change of L as observed for the carbonyl complexes.

The π -(C₅H₅)Fe(CO)₂(CS)⁺ reacts with a 10fold excess of CNC₆H₅ according to the equation:

$$\pi - (C_5H_5)Fe(CO)_2(CS)^+ + 2 CNC_6H_5 \rightarrow \pi - (C_5H_5)$$

Fe(CNC_6H_5)_2(CS)^+ + 2 CO (7)

The isocyanide complex was characterized from its i.r. and n.m.r. spectra (see Table II). If the reaction is carried out with the stoichiometric amount of the phenyl isocyanide, the i.r. spectrum of the reaction product shows together with the bands due to the π -(C₅H₅)Fe(CNC₆H₅)₂(CS)⁺ additional bands at 2130, 2030, 1330 cm⁻¹ attributable to a ν (C=N), a ν (C=O) and a ν (C=S) of the π -(C₅H₅)Fe(CO)(CS)(CNC₆H₅)⁺, respectively. The reaction with CNC₆H₅ probably proceeds by successive substitution of the carbonyl groups in the π (C₅H₅)Fe(CO)₂(CS)⁺ complex.

It should be pointed out that the π -(C₅H₅)Fe(CO)₂ (CS)⁺ does not yield π -(C₅H₅)Fe(CS)(L)₂⁺ on reacting with Group VA donors, even in the presence of large excess of ligand, in agreement with the lower labilising effect of the phosphines with respect to the CNR ligand¹⁵.

The substitution reactions investigated in this study indicate-in line with the molecular orbital calculations

Compound	$\nu_{\rm co}^{\rm a}, {\rm cm}^{-1}$	$\nu_{\rm CS}^{\rm a}$, cm ⁻¹	$\nu_{\rm CN}^{\rm a}$, cm ⁻¹	C ₅ H ₅ , ^c τ	Other Resonances
[<i>π</i> -(C ₅ H ₅)Fe(CO) ₂ (CS)]PF ₆	2093, 2064 (s)	1348 (s)		3.82 ^d	
$[\pi$ -(C ₅ H ₅)Fe(CNC ₆ H ₅) ₂ (CS)]PF ₆	Ì	1310^{b} (s)	2180, 2140 ^b (s)	4.56°	\approx 2.4 (m) (C ₆ H ₅)
$[\pi - (C_5H_5)Fe(CO)(CS)(P(C_5H_4F)_3)]PF_6$	2037 (s)	1325 (s)	1	4.32 ^d	$\approx 2.5 \text{ (m)}(C_6H_4)$
[π-(C ₅ H ₅)Fe(CO)(CS)(P(C ₆ H ₁₁) ₃)]PF ₆	2037 (s)	1315 (s)	1	4.50 ^e	$\approx 8.3 \text{ (m)}(C_6H_{11})$
[π-(C ₅ H ₅)Fe(CO)(CS)(P(C ₆ H ₄ OCH ₃) ₃)]PF ₆	2030(s)	1310 (s)	I	4.80°	$6.13 \text{ (CH3)}, \approx 2.7 \text{ (m)}(C_6H_4)$
[<i>n</i> -(C ₅ H ₅)Fe(CO)(CS)(P(C ₆ H ₅) ₃)]PF ₆	2035 (s)	1320 (s)	I	4.31 ^{d, f}	2.17 (m) (C ₆ H ₅)
$[\pi-(C_5H_5)Fe(CO)(CS)(Sb(C_6H_5)_3)]PF_6$	2033 (s)	1321 (s)	I	I	
[π-(C ₅ H ₅)Fe(CO)(CS)(As(C ₆ H ₅) ₃)]PF ₆	2030(s)	1325 (s)	I	1	1
[π-(C ₅ H ₅)Fe(CO)(CNCH ₃)(P(C ₆ H ₄ F) ₃)]PF ₆	1996 (s)	:	2195 (m)	5.06°	6.78 (CH ₃), $\approx 2.7 \text{ (m)}(C_6H_4)$
[π-(C ₅ H ₅)Fe(CO)(CNCH ₃)(P(C ₆ H ₁₁) ₃)]PF ₆	1990 (s)	1	2190 (m)	4.94°	$6.48 (CH_3), \approx 8.4 (C_6H_{11})$
[π-(C ₅ H ₅)Fe(CO)(CNCH ₃)(P(C ₆ H ₅) ₃)]PF ₆	1999 ^b (s)	I	2194^{b} (m)	4.90 ^d	$6.86 \text{ (CH3)}, \approx 3.00 \text{ (m) (C6H5)}$
[π-(C ₅ H ₅)Fe(CO)(CNC ₆ H ₁₁)(P(C ₆ H ₅) ₃)]PF ₆	1997 (s)	1	2184 (m)	5.00€	$\approx 2.4 \text{ (m)} (C_6H_5), \approx 8.5 \text{ (m)} (C_6H_{11})$
$[\pi-(C_sH_s)Fe(CO)(CNC_6H_s)(P(C_6H_s)_3)]PF_6$	1998 ^b (s)	I	2140^{b} (s)	ı	
π -(C ₅ H ₅)Fe(CO)(P(C ₆ H ₅) ₃)(C(S)OCH ₃)	1950 (s)	1260 (s)	2	5.61 ⁸	$6.60 (CH_3), \approx 2.8 (m)(C_6H_5)$
<i>π</i> -(C ₅ H ₅)Fe(CNC ₆ H ₅) ₂ (C(S)OCH ₃)	Ì		2110, 2060 (s)	5.378	$5.97 (CH_3)$, $\approx 2.72 (m) (C_6H_5)$
π -(C _s H _s)Fe(CO)(P(C _s H _s) ₃)NCS	1960 (s)	815 (m)	2120 (s)	I	1
π -(C ₅ H ₅)Fe(CO)(P(C ₆ H ₁₁) ₃)NCS	1955 (s)	820 (m)	2105 (s)	I	I

^a Nujol mull except as noted. ^b CH₂Cl₂ solvent. ^c Singlets except as noted. ^d Acctone-d₆ solvent. ^e Chloroform-d₁ solvent. ^f Doublet due to coupling with ³¹P; J = 1.5 Hz. ^g CS₂ solvent.

Thiocarbonyl Complexes

TABLE II. Infrared and Proton N.m.r. Spectra.

TABLE III. ¹³C N.m.r. Chemical Shifts (ppm)^a, ²J_{¹³C³¹P} Coupling Constants and Force Constants (mdyn/Å) for the Thiocarbonyl Mode in π -(C₅H₅)Fe(CO)(CS)(L)⁺ Derivatives.

Complex	C ₅ H ₅	СО	${}^{2}J_{{}^{13}C^{31}P}$	CS	${}^{2}J_{{}^{13}C^{31}P}$	Solvent	$k_{\rm CS}^{\rm b}$
$[\pi - (C_5H_5)Fe(CO)_2(CS)]PF_6^{\circ}$	-92.1	-203.3		-307.9	_	Acetone-d ₆	9.35
$[\pi - (C_5H_5)Fe(CO)(CS)(P(C_6H_4F)_3)]PF_6$	-91.1	-209.1	34	-316.4	27	Acetone-d ₆	9.03
$[\pi - (C_5H_5)Fe(CO)(CS)(P(C_6H_5)_3)]PF_6$	-91.5	-209.0	35	-317.4	26	Acetone-d ₆	8.96
$[\pi - (C_5H_5)Fe(CO)_2(P(C_6H_5)_3)]PF_6^c$	-90.8	-210.5	24	_	_	Acetone-d ₆	_
$[\pi - (C_5H_5)Fe(CO)(CS)(P(C_6H_{11})_3)]PF_6$	-90.2	-211.9	23	-320.0	27	CD ₃ CN/CH ₂ Cl ₂	8.90
$[\pi - (C_5H_5)Fe(CS)(CNC_6H_5)_2]PF_6$	-88.7	_	-	-320.1	-	CDCl ₃	8.83

^a Chemical Shifts in ppm downfield from TMS as internal standard. ^b Calculated from the equation, $\lambda = \mu \cdot k$. ^c Data taken from G. M. Bodner, *Inorg. Chem.*, 13, 2563 (1974).

which predicted that CS should be a better σ -donor ligand and a better π -acceptor than CO-that the strength of the Fe-(CS) bond is greater than that of the Fe-(CO) bond in similar organometallic complexes.

Carbon-13 N.m.r. Spectra

Previous reports of ¹³C n.m.r. spectra of transition carbonyl complexes have indicated a linear correlation between the ¹³C n.m.r. carbonyl chemical shifts and the stretching frequencies or force constants of the CO mode^{16,17}. In these studies it has been pointed out that the sign of the correlation is opposite to that expected on the basis of the model which predicts the stretching force constant to be directly proportional to the positive character of the carbonyl carbon¹⁸. In Table III are collected the ¹³C n.m.r. data for some of the thiocarbonyl complexes reported in this work. The n.m.r. analysis was limited to only four complexes because of the low solubility of the starting derivatives; the spectra were recorded in presence of Me4Si as internal chemical shift reference and of $Cr(acac)_3$ (~0.05M) as shiftless relaxation reagent¹⁹.

The data in Table III indicate that the infrared stretching force constant of the CS group decreases as the deshielding of the thiocarbonyl resonance increases as observed by Bodner¹⁶ for the ¹³C n.m.r. chemical shifts of a series of π -(C₅H₅)M(CO)₂L derivatives (M = Cr⁻, Mn⁰, Fe⁺).

The ¹³C thiocarbonyl chemical shifts follow the same trend as the ¹³C carbonyl chemical shifts and, since it is well established that the latter is proportional to the electron density on the transition metal, it follows that also the ¹³C n.m.r. thiocarbonyl chemical shift is proportional to the electron density on the transition metal and therefore a good measure of the relative σ -basicity/ π -acidity of ligands in substituted metal thiocarbonyl complexes. The data presented in Table III suggest that the order of increasing electron density at the metal in π -(C₅H₅)Fe(CO)(CS)(L)⁺ complexes is: CO < P(C₆ H₄F)₃ < P(C₆H₅)₃ < P(C₆H₁₁)₃ < CNC₆H₅.

The deshielding of the thiocarbonyl resonance in π -(C₅H₅)Fe(CS)(CNC₆H₅)₂⁺ relative to π -(C₅H₅)Fe (CO)₂(CS)⁺ reflects an increase of electron density

at the metal that might arise from the well established poor π -acceptor ability of the CNC₆H₅ group, whereas *shielding* of the carbonyl resonance of π -(C₅H₅)Fe (CO)(CS)(P(C₆H₅)₃)⁺ relative to the π -(C₅H₅)Fe (CO)₂(P(C₆H₅)₃)⁺ could be due to the increased π acidity of the CS group relative to the CO group.

Addition Reactions

Nucleophilic attacks at the carbonyl carbon in transition metal carbonyl complexes are rather common and widely studied²⁰. It has been suggested that the driving force of these reactions is the electrophilic character of the carbonyl carbon which is estimated by the C–O stretching force constants of the coordinated CO group²¹, *e.g.*, the higher the force constant, the higher the positive charge on the carbon.

This correlation is rather good in predicting the reactivity toward nucleophiles of carbonyl complexes but it seems not so good in predicting the reactivity of complexes which contain other sites susceptible of nucleophilic attack such as CNR or $CH_2 = CH_2^{22,23}$. This appears to be also the case of the π -(C₅H₅)Fe(CO)₂ $(CS)^+$ in which both the carbonyl and thiocarbonyl carbons are available sites of nucleophile addition and, in spite of the high CO force constant (17.4 mdyn/Å), the reactions with different nucleophiles (NH₂R, RO⁻, N_3^-) proceed via attack at the thiocarbonyl carbon⁹. Since nucleophilic additions at the coordinated CO group are sensitive to the electron density on the metal (vide supra) we have investigated the reactions of the new π -(C₅H₅)Fe(CO)(CS)(L)⁺ complexes here reported with various nucleophiles such as NH2R, CH₃O⁻, N₃⁻, NH₂-NH₂ in order to have information on the influence of the phosphine ligands in these reactions.

Primary amines react with the π -(C₅H₅)Fe(CO) (CS)(L)⁺ to form isocyanide complexes according to equation (8):

$$\pi - (C_5H_5)Fe(CO)(CS)(L)^+ + NH_2R \rightarrow \pi - (C_5H_5)$$

$$Fe(CO)(CNR)(L)^+ + H_2S \quad (8)$$

$$L = P(C_6H_5)_3 \qquad R = CH_3, C_6H_{11}, C_6H_5$$

$$L = P(C_6H_{11})_3, P(p-FC_6H_4)_3 \qquad R = CH_2$$

The spectroscopic properties of the isocyanide derivatives are collected in Table II and those for the π - $(C_5H_5)Fe(CO)(CNCH_3)(P(C_6H_5)_3)^+$ are in agreement with that reported for the same complex prepared from π -(C₅H₅)Fe(CO)(P(C₆H₅)₃)CN and CH₃I^{22,24}. Earlier π -(C₅H₅)Fe(CO)₂(CS)⁺ was reported to react with methylamine giving the thiocarbamoyl complex π -(C₅H₅)Fe(CO)₂C(S)NHCH₃⁹. Further work on this reaction has indicated the formation of the isocyanide derivative π -(C₅H₅)Fe(CO)₂(CNCH₃)⁺ according equation (8) where $L = CO^{25}$.

The isocyanide complexes are produced within few minutes when $L = P(C_6H_5)_3$ or $P(p-FC_6H_4)_3$ and $R = CH_3$; with a more basic phosphine such as $P(C_6H_{11})_3$ the reaction is slower; the same effect is obtained as the basicity of the reacting amines decrases: e.g. when $L = P(C_6H_5)_3$ and $R = C_6H_5$ the reaction takes about 20 days to go to completion. These results of decreasing reactivity are probably due to a lower rate of amine attack on the thiocarbonyl carbon atom, which forms the carbene intermediate

$$\left(\begin{array}{ccc} & CO & SH \\ i & Fe & C_{s}H_{s} & -Fe & -C_{s}H_{t} \\ i & I & H_{t} \\ i & I \\ R \end{array}\right)^{+}$$

similar to those of the type $[Cl(P(C_6H_5)_3)Pt-C]^+$ NMe₂

recently isolated by Angelici²⁶, which rapidly rearrange to isocyanide by eliminating hydrogen sulphide. Owing to the higher reactivity of CS relative to CO, the isocyanide derivatives can be obtained from reaction (8) even if the starting thiocarbonyl complexes are contaminated with π -(C₅H₅)Fe(CO)₂(L)⁺ as indicated by the absence of the ν (CO) stretch at 1560 cm⁻¹, in the reaction mixture, due to the carboxamido group C(O)NHR eventually formed by nucleophilic attack of the amine on the coordinated CO²⁷.

Reaction (8) can be followed by the disappearance of the reactant infrared bands at 2030-2037 (CO stretch) and 1315-1325 cm⁻¹ (CS stretch) and the appearance of the product absorptions at 1996-1999 (CO) and 2140–2190 cm⁻¹ (C \equiv NR).

It has been shown recently that the π -(C₅H₅)Fe $(CO)(P(C_6H_5)_3)(CNR)^+$ reacts with NH₂CH₃ to give the amidinium complex π -(C₅H₅)Fe(CO) $(P(C_6H_5)_3)(C(NHCH_3)_2)^+$; in the nucleophilic addition with the thiocarbonyl complexes here reported no carbene derivative has been found in the reaction mixture under the conditions reported in the experimental section, suggesting that the reaction of amines with coordinated CS group is much more rapid than those with isocyanide as in the case of mixed carbonyl isocyanide complexes28.

Like the π -(C₅H₅)Fe(CO)₂(CS)⁺⁹ the π -(C₅H₅)Fe $(CO)(CS)(L)^+$ reacts with N₃⁻ and hydrazine to form

the N-bonded thiocyanate complex π -(C₅H₅)Fe(CO) (L)(NCS) via reactive intermediates of the type

$$\begin{array}{cccc} & & & & & & CO & & & & CO & & & & I & & \\ I & & I & & & & I & & & \\ C_5H_5 & - F_6 & - L & & & & I & \\ I & & I & & & & I & \\ C & - N_3 & & & C & - & NHNH_2 \\ II & & & II & & \\ II & & & II & & \\ S & S & S & S & S \end{array}$$

which rearrange eliminating nitrogen or ammonia.

Finally the π -(C₅H₅)Fe(CNC₆H₅)₂(CS)⁺ reacts with CH_3O^- in anhydrous methanol to give the thiocarboxyl derivative π -(C₅H₅)Fe(CNC₆H₅)₂(C(S) OCH₃). This isocyanide derivative is important in that it underlines the difference in reactivity of CO and CS bonded to similar organometallic complexes; in fact whereas the ν -(C₅H₅)Fe(CO)(CNCH₃)₂⁺ gives the π -(C₅H₅)Fe(CO)(CNCH₃)(C amidinium complex $(NHCH_3)_2)^+$ by reacting with methylamine²², preliminary results on the reaction of π -(C₅H₅)Fe(CNC₆H₅)₂ $(CS)^+$ with $C_6H_{11}NH_2$ in CH_2Cl_2 indicate the formation of π -(C₅H₅)Fe(CNC₆H₅)₂(CNC₆H₁₁)⁺ (ν_{CN} 2178, 2125, 2128 cm^{-1}) which can be isolated by chromatography from the reaction mixture containing amidinium derivatives (ν_{CN} 1525 cm⁻¹) formed by successive nucleophilic attack on the carbon of the coordinated isonitrile.

The results discussed above on the electrophilic reactivity of these new thiocarbonyl complexes indicate that despite its greater character of π -acceptor relative to CO, the CS group is always the reactive site in the reaction with nucleophiles whatever the nucleophile used and the change in the charge distribution on the central metal; this would indicate a strong electrophilic character for the CS carbon atom which is consistent with the observed deshielding of the thiocarbonyl resonance in the ¹³C n.m.r. spectra. On the other hand, it should be pointed out that the nucleophilic addition on the CS ligand occcurs at a rate substantially faster than for the CO ligand9, suggesting a strong stabilization of the transition state probably due to the liberation of small molecules (cf. reactions (3), (5)).

Acknowledgments

The author wish to thank Dr. B.D. Dombek for his assistance in running the ¹³C n.m.r. spectra, the C.N.R. and the N.A.T.O. (Grant n° 805) for support of this research.

References

- 1 L. Busetto and R.J. Angelici, J. Am. Chem. Soc., 90, 3283 (1968).
- 2 A.E. Fenster and I.S. Butler, Can. J. Chem., 50, 176 (1972).

- 3 M.P. Yagupsky and G. Wilkinson, J. Chem. Soc. A, 2813 (1968).
- 4 K. Burger, L. Korecz, P. Mag, U. Belluco and L. Busetto, Inorg. Chim. Acta, 5, 362 (1971).
- 5 I.S. Butler and A.E. Fenster, *Inorg. Chim. Acta*, 7, 79 (1973).
- 6 N.J. Coville and I.S. Butler, J. Organometal. Chem., 64, 101 (1974).
- 7 G. Jaonen, A. Meyer and G. Simonneaux, Tetrahedron Lett., 52, 5163 (1973).
- 8 M.J. Mays and F.F. Stefanini, J. Chem. Soc. A, 2747 (1971).
- 9 L. Busetto, M. Graziani and U. Belluco, *Inorg. Chem.*, 10, 78 (1971).
- 10 B.D. Dombek and R.J. Angelici, J. Am. Chem. Soc., 95, 7615 (1973).
- 11 L. Busetto, U. Belluco and R.J. Angelici, J. Organometal. Chem., 18, 213 (1969).
- 12 I. Ugi, U. Fetzer, U. Eholzer, H. Knupfer and K. Offermann, Angew. Chem. Internat. Ed., 4, 472 (1965).
- 13 B.D. Dombek and R.J. Angelici, *Inorg. Chim. Acta*, 7, 345 (1973).
- 14 P.M. Treichel, R.L. Shubkin, K.W. Barnett and D. Reichard, *Inorg. Chem.*, 5, 1177 (1966).
- 15 E.M. Thorsteinson and F. Basolo, *Inorg. Chem.*, 5, 1691 (1966).

- 16 G.M. Bodner and L.J. Todd, Inorg. Chem., 13, 2563 (1974).
- 17 G.M. Bodner and L.J. Todd, *Inorg. Chem.*, 13, 1335 (1974) and references therein.
- 18 D.J. Darensbourg and M.Y. Darensbourg, *Inorg. Chem.*, 9, 1961 (1970).
- 19 O.A. Gansow, A.R. Burke and J.N. La Mar, J. Chem. Soc. Chem. Comm., 456 (1972).
- 20 R.J. Angelici, Accounts Chem. Res., 5, 335 (1972).
- 21 R.J. Angelici and L. Blacik, Inorg. Chem., 11, 1754 (1972).
- 22 R.J. Angelici, P.A. Christian, B.D. Dombeck and G.A. Pfeffer, J. Organometal. Chem., 67, 287 (1974).
- 23 L. Busetto, A. Palazzi, R. Ros and U. Belluco, J. Organometal. Chem., 25, 207 (1970).
- 24 C.E. Coffey, J. Inorg. Nucl. Chem., 25, 179 (1963).
- 25 The spectroscopic properties of the π -(C₃H₃)Fe(CO)₂ (CNCH₃)⁺ are in agreement with those reported by other authors, see ref. 22 and 24.
- 26 E.D. Dobrzynski and R.J. Angelici, Inorg. Chem., 14, 1513 (1975).
- 27 L. Busetto and R.J. Angelici, *Inorg. Chim. Acta*, 2, 391 (1968).
- 28 B. Crociani, T. Boschi, M. Nicolini and U. Belluco, *Inorg. Chem.*, 11, 1292 (1972).